Mathematical strategies for filtering complex systems: Regularly spaced sparse observations
نویسندگان
چکیده
Real time filtering of noisy turbulent signals through sparse observations on a regularly spaced mesh is a notoriously difficult and important prototype filtering problem. Simpler off-line test criteria are proposed here as guidelines for filter performance for these stiff multi-scale filtering problems in the context of linear stochastic partial differential equations with turbulent solutions. Filtering turbulent solutions of the stochastically forced dissipative advection equation through sparse observations is developed as a stringent test bed for filter performance with sparse regular observations. The standard ensemble transform Kalman filter (ETKF) has poor skill on the test bed and even suffers from filter divergence, surprisingly, at observable times with resonant mean forcing and a decaying energy spectrum in the partially observed signal. Systematic alternative filtering strategies are developed here including the Fourier Domain Kalman Filter (FDKF) and various reduced filters called Strongly Damped Approximate Filter (SDAF), Variance Strongly Damped Approximate Filter (VSDAF), and Reduced Fourier Domain Kalman Filter (RFDKF) which operate only on the primary Fourier modes associated with the sparse observation mesh while nevertheless, incorporating into the approximate filter various features of the interaction with the remaining modes. It is shown below that these much cheaper alternative filters have significant skill on the test bed of turbulent solutions which exceeds ETKF and in various regimes often exceeds FDKF, provided that the approximate filters are guided by the off-line test criteria. The skill of the various approximate filters depends on the energy spectrum of the turbulent signal and the observation time relative to the decorrelation time of the turbulence at a given spatial scale in a precise fashion elucidated here. 2008 Elsevier Inc. All rights reserved.
منابع مشابه
Interpolating Irregularly Spaced Observations for Filtering Turbulent Complex Systems
We present a numerically fast reduced filtering strategy, the Fourier domain Kalman filter with appropriate interpolations to account for irregularly spaced observations of complex turbulent signals. The design of such a reduced filter involves: (i) interpolating irregularly spaced observations to the model regularly spaced grid points, (ii) understanding under which situation the small scale o...
متن کاملMathematical test criteria for filtering complex systems: Plentiful observations
An important emerging scientific issue is the real time filtering through observations of noisy turbulent signals for complex systems as well as the statistical accuracy of spatio-temporal discretizations for such systems. These issues are addressed here in detail for the setting with plentiful observations for a scalar field through explicit mathematical test criteria utilizing a recent theory...
متن کاملAssimilating irregularly spaced sparsely observed turbulent signals with hierarchical Bayesian reduced stochastic filters
In this paper, we consider a practical filtering approach for assimilating irregularly spaced, sparsely observed turbulent signals through a hierarchical Bayesian reduced stochastic filtering framework. The proposed hierarchical Bayesian approach consists of two steps, blending a data-driven interpolation scheme and the Mean Stochastic Model (MSM) filter. We examine the potential of using the d...
متن کاملTest Models for Filtering with Superparameterization
Superparameterization is a fast numerical algorithm to mitigate implicit scale separation of dynamical systems with large-scale, slowly varying ‘mean’, and smaller scale, rapidly fluctuating ‘eddy’ term. The main idea of superparameterization is to embed parallel highly resolved simulations of small scale eddies on each grid cell of coarsely resolved large scale dynamics. In this paper, we stud...
متن کاملA Total Ratio of Vegetation Index (TRVI) for Shrubs Sparse Cover Delineating in Open Woodland
Persian juniper and Pistachio are grown in low density in the rangelands of North-East of Iran. These rangelands are populated by evergreen conifers, which are widespread and present at low-density and sparse shrub of pistachio in Iran, that are not only environmentally but also genetically essential as seed sources for pistachio improvement in orchards. Rangelands offer excellent opportunities...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 227 شماره
صفحات -
تاریخ انتشار 2008